A_{∞} **STRUCTURES**

ADVIKA RAJAPAKSE

ABSTRACT. We discuss \mathcal{A}_{∞} algebras and modules, tensor products of \mathcal{A}_{∞} modules, and type D structures on graded **k**-modules.

Contents

1.	Introduction	1
2.	\mathcal{A}_{∞} algebras and modules	1
3.	\mathcal{A}_{∞} tensor products	4
4.	Type D structures	4
Ref	References	

1. INTRODUCTION

These lecture notes follow sections 2.1, 2.2, and 2.3 of Bordered Heegaard Floer homology by Lipshitz, Ozsváth, and Thurston [1]. The first two sections of these lecture notes focus on the definitions of \mathcal{A}_{∞} algebras, \mathcal{A}_{∞} modules, and the \mathcal{A}_{∞} tensor product. The third section of these notes defines type D structures and proves a correspondence lemma that associates D homomorphisms with differential graded (dg) homomorphisms.

2. \mathcal{A}_{∞} algebras and modules

We work in the category of \mathbb{Z} -graded complexes over a fixed commutative ground ring k, where k has has characteristic 2. The symbol \otimes with no subscript will be implicitly understood to be the tensor product over the ring k. We consider modules M over k, where

$$M = \bigoplus_{d \in \mathbb{Z}} M_d.$$

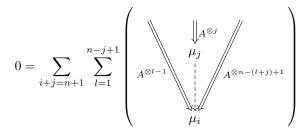
Also for $n \in \mathbb{Z}$ and M a graded k-module, we can shift the grading of M by n to define M[n], where $M[n]_d = M_{d-n}$.

Definition 2.1. An \mathcal{A}_{∞} algebra A over k is a graded k-module equipped with k-linear multiplication maps $\mu_i : A^{\otimes i} \to A[2-i]$ satisfying the compatibility conditions

$$\sum_{i+j=n+1}\sum_{l=1}^{n-j+1}\mu_i(a_1\otimes\ldots\otimes a_{l-1}\otimes\mu_j(a_l\otimes\ldots\otimes a_{l+j-1})\otimes a_{l+j}\otimes\ldots\otimes a_n)$$

for each $n \geq 1$.

We can visualize the compatibility conditions of \mathcal{A}_{∞} modules in the following diagram:



The double arrows represent elements of $A^{\otimes i}$ coming in, where $i \geq 1$. The single dotted arrow represents an element of A coming in. We will use this diagram style throughout these lecture notes.

If we forget about μ_i for i > 1, we can view an \mathcal{A}_{∞} algebra as a chain complex in the usual sense. If for $(A, \{\mu_i\}_{i=1}^{\infty})$, we have $\mu_i = 0$ for i > 2, then we call $(A, \{\mu_i\}_{i=1}^{\infty})$ a *differential graded* (dg) algebra over k. $\mu_1 : A \to A[1]$ would be the differential and $\mu_2 : A \otimes A \to A$ would be the multiplication map.

We can reinterpret the compatibility conditions of an \mathcal{A}_{∞} algebra if we define

$$\mathcal{T}^*(A[1]) := \bigoplus_{n=0}^{\infty} A^{\otimes n}[n].$$

This way, we can combine the μ_i 's into a single map $\mu : \mathcal{T}^*(A[1]) \to A[2]$ and define $\overline{D} : \mathcal{T}^*(A[1]) \to \mathcal{T}^*(A[1])$ by

$$\overline{D} := \sum_{j=1}^{n} \sum_{l=1}^{n-j+1} \begin{pmatrix} & & & \\ & \\ &$$

The compatibility condition is equivalent to $\mu \circ \overline{D} = 0$, which is also equivalent to $\overline{D} \circ \overline{D} = 0$.

Definition 2.2. An \mathcal{A}_{∞} algebra $(A, \{\mu_i\}_{i=1}^{\infty})$ is operationally bounded if $\mu_i = 0$ for *i* sufficiently large.

Definition 2.3. A (right) \mathcal{A}_{∞} module \mathcal{M} over \mathcal{A} is a graded k-module M equipped with operations

$$m_i: M \otimes A^{\otimes (i-1)} \to M[2-i]$$

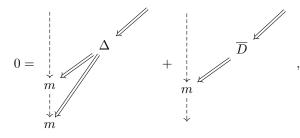
satisfying the compatibility conditions

$$0 = \sum_{i+j=n+1} m_i (m_j (x \otimes a_1 \otimes \ldots \otimes a_{j-1}) \otimes \ldots \otimes a_{n-1})$$

+
$$\sum_{i+j=n+1} \sum_{l=1}^{n-j} m_i (x \otimes a_1 \otimes \ldots \otimes a_{l-1} \otimes \mu_j (a_l \otimes \ldots \otimes a_{l+j-1}) \otimes \ldots \otimes a_{n-1}),$$

 $\mathbf{2}$

which can be visualized as



where $\Delta : \mathcal{T}^*(A[1]) \to \mathcal{T}^*(A[1]) \otimes \mathcal{T}^*(A[1])$ is the map

$$\Delta(a_1 \otimes \ldots \otimes a_n) = \sum_{m=0}^n (a_1 \otimes \ldots \otimes a_m) \otimes (a_{m+1} \otimes \ldots \otimes a_n).$$

Definition 2.4. An \mathcal{A}_{∞} module \mathcal{M} over a strictly unital \mathcal{A}_{∞} algebra is *strictly* unital if $m_2(x \otimes 1) = x$, $m_i(x \otimes a_1 \otimes \ldots \otimes a_{i-1}) = 0$ if i > 2 and some $a_j = 1$. \mathcal{M} is bounded if $m_i = 0$ for sufficiently large i.

We can combine the μ_i and m_i into a degree 1 map

$$\overline{m}: M \otimes \mathcal{T}^*(A[1]) \to M \otimes \mathcal{T}^*(A[1])$$

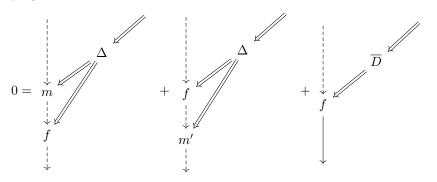
defined by

$$\overline{m}(x_1 \otimes a_2 \otimes \ldots \otimes a_n) = \sum_{l=1}^n m_l(x \otimes a_2 \otimes \ldots \otimes a_l) \otimes a_{l+1} \otimes \ldots \otimes a_n + \sum_{j=1}^n \sum_{l=1}^{n-j+1} x \otimes a_1 \otimes \ldots \otimes a_{l-1} \otimes \mu_j(a_l \otimes \otimes a_{l+j-1}) \otimes a_{l+j} \otimes \ldots \otimes a_n.$$

Definition 2.5. A strictly unital homomorphism $f : \mathcal{M} \to \mathcal{M}'$ of \mathcal{A}_{∞} modules is a collection of maps

$$f_i: M \otimes A^{\otimes (i-1)} \to M'[1-i]$$

satisfying



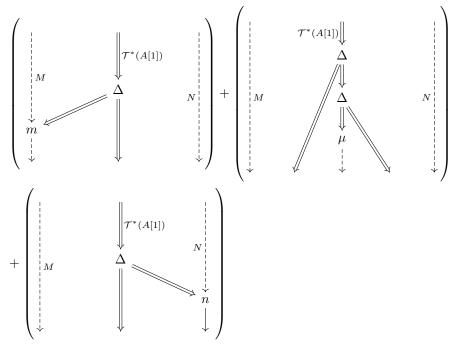
One example of a strictly unital homomorphism is the *identity homomorphism*, defined by $1: \mathcal{M} \to \mathcal{M}, 1_1(x) = x, 1_i(x \otimes A^{\otimes (i-1)}) = 0$ for i > 1. In the Bordered Heegaard Floer homology paper, compsition of homomorphisms of \mathcal{A}_{∞} modules is defined, and in this sense, 1 acts as the identity homomorphism.

3. \mathcal{A}_{∞} tensor products

Definition 3.1. Let \mathcal{M} be a right \mathcal{A}_{∞} module and let \mathcal{N} be a left \mathcal{A}_{∞} module over an \mathcal{A}_{∞} algebra \mathcal{A} . Their \mathcal{A}_{∞} tensor product is the chain complex

$$\mathcal{M}\widetilde{\otimes}_{\mathcal{A}}\mathcal{N} := M \otimes \mathcal{T}^*(A[1]) \otimes N$$

equipped with the boundary operator



An important case is when $\mathcal{N} = \mathcal{A}$, in which we have

$$\overline{\mathcal{M}} = \mathcal{M} \widetilde{\otimes}_{\mathcal{A}} \mathcal{N} := M \otimes \mathcal{T}^*(A[1]) \otimes \mathcal{A},$$

which has the structure of an \mathcal{A}_{∞} module over \mathcal{A} .

In the lecture notes on Bordered Heegaard Floer homology, homotopies between homomorphisms of \mathcal{A}_{∞} modules is defined. Using these definitions, the authors prove the following proposition:

Proposition 3.2. If \mathcal{A} and \mathcal{M} are strictly unital, $\overline{\mathcal{M}}$ is homotopy equivalent to \mathcal{M} .

4. Type D structures

Definition 4.1. Fix a dg algebra \mathcal{A} . Let N be a graded k-module, equipped with a map

$$\delta_N^1: N \to (A \otimes N)[1]$$

such that

$$(\mu_1 \otimes \mathbb{1}_N) \circ (\mathbb{1}_A \otimes \delta^1) \circ \delta^1 + (\mu_1 \otimes \mathbb{1}_N) \circ \delta^1 : N \to A \otimes N$$

vanishes. We call (N, δ_N^1) a type D structure over A with base ring k. A k-module map $\psi: N_1 \to A \otimes N_2$ is a D-structure homomorphism if

$$(\mu_2 \otimes \mathbb{1}_{N_2}) \circ (\mathbb{1}_A \otimes \psi^1) \circ \delta^1_{N_1} + (\mu_2 \otimes \mathbb{1}_{N_2}) \circ (\mathbb{1}_A \otimes \delta^1_{N_2}) \circ \psi^1 + (\mu_1 \otimes \mathbb{1}_{N_2}) \circ \psi^1 = 0.$$

Lemma 4.2. If (N, δ^1) is a type D structure, then $A \otimes N$ can be given the structure of a left A module, with

$$m_1(a \otimes y) = [(\mu_2 \otimes \mathbb{1}_N) \circ (\mathbb{1}_A \otimes \delta^1) + \mu_1 \otimes \mathbb{1}_N]$$
$$m_2(a_1 \otimes (a \otimes y)) = \mu_2(a_1 \otimes a) \otimes y.$$

Moreover, if $\psi^1 : N_1 \to A \otimes N_2$ is a D-structure homomorphism, then there is an induced map of dg modules from $A \otimes N_1$ to $A \otimes N_2$ defined by $(m_2 \otimes \mathbb{1}_{N_2}) \circ (\mathbb{1}_A \otimes \psi^1)$.

So by the lemma, we can associate a dg module \mathcal{N} to a type D structure (N, δ^1) .

Lemma 4.3. Let N_1 , N_2 be two type D structures over a dg algebra A, and $\mathcal{N}_1 := A \otimes N_1, \mathcal{N}_2 := A \otimes N_2$ be their associated dg modules. The correspondence from the previous lemma gives an isomorphism between the space of type D homomorphisms $N_1 \to A \otimes N_2$ with the sapce of dg homomrphisms from \mathcal{N}_1 to \mathcal{N}_2 . Two type D homomorphisms are homotopic iff the corresponding dg homomrphisms are homotopy.

Proof. We only prove the correspondence between dg homomorphisms and type D homomorphisms. Given $\psi : \mathcal{N}_1 \to \mathcal{N}_2$ a dg homomorphism, we prove $\psi^1 : \mathcal{N}_1 \to A \otimes \mathcal{N}_2$, $\psi^1(x) = \psi(1 \otimes x)$ is a D structure homomorphism. Indeed,

$$\begin{aligned} (\mu_2 \otimes \mathbb{1}_{N_2}) \circ (\mathbb{1}_A \otimes \psi^1) \circ \delta^1_{N_1} + (\mu_2 \otimes \mathbb{1}_{N_2}) \circ (\mathbb{1}_A \otimes \delta^1_{N_2}) \circ \psi^1 + (\mu_1 \otimes \mathbb{1}_{N_2}) \circ \psi^1 \\ = & m'_2 \circ (\mathbb{1}_A \circ \psi^1) \circ \delta^1_{N_1} + m'_1 \circ \psi^1 \\ = & \psi \circ \delta^1_{N_1} + \psi \circ \delta^1_{N_1} \\ = & 0 \end{aligned}$$

because we have

$$m'_{2} \circ (a \otimes \psi^{1}(x)) = m'_{2}(a \otimes \psi(1 \otimes x))$$
$$= \psi(m_{2}(a \otimes (1 \otimes x)))$$
$$= \psi(\mu_{2}(a \otimes 1) \otimes x)$$
$$= \psi(a \otimes x)$$

and

$$\begin{split} m_{1}' \circ \psi^{1}(x) = & m_{1}' \circ \psi(1 \otimes x)) \\ = & \psi(m_{1}(1 \otimes x)) \\ = & \psi([(\mu_{2} \otimes \mathbb{1}_{N_{1}}) \circ (\mathbb{1}_{A} \otimes \delta_{N_{1}}^{1}) + \mu_{1} \otimes \mathbb{1}_{N}](1 \otimes x)) \\ = & \psi((\mu_{2} \otimes \mathbb{1}_{N_{1}}) \circ (1 \otimes \delta_{N_{1}}^{1}(x)) + \mu_{1}(1) \otimes x) \\ = & \psi(\delta_{N_{1}}^{1}(x) + 0 \otimes x) \\ = & \psi(\delta_{N_{1}}^{1}(x)). \end{split}$$

Now given $\psi^1 : N_1 \to A \otimes N_2$ a *D*-structure homomorphism, we see that $m'_2 \circ (\mathbb{1}_A \otimes \psi^1)$ is a dg homomorphism from $\mathcal{N}_1 = A \otimes N_1$ to $\mathcal{N}_2 = A \otimes N_2$. Indeed, we see

that $m'_2 \circ (\mathbb{1}_A \otimes \psi^1)$ commutes with the algebra action:

$$m'_{2}(a_{1} \otimes (m'_{2} \circ (\mathbb{1}_{A} \otimes \psi^{1})(a_{2} \otimes x))) = m'_{2}(a_{1} \otimes (m'_{2} \circ (a_{2} \otimes \psi^{1}(x)))$$
$$= m'_{2}(\mu_{2}(a_{1} \otimes a_{2}) \otimes \psi^{1}(x))$$
$$= m'_{2} \circ (\mathbb{1}_{A} \otimes \psi^{1})(\mu_{2}(a_{1} \otimes a_{2}) \otimes x)$$
$$= m'_{2} \circ (\mathbb{1}_{A} \otimes \psi^{1})(m_{2}(a_{1} \otimes (a_{2} \otimes x)))$$

where the second equality comes from the definition of m'_2 and the compatibility conditions for A_{∞} algebras. Second, we have that $m'_2 \circ (\mathbb{1}_A \otimes \psi^1)$ commutes with the chain differential. Indeed,

$$\begin{split} & m_1'(m_2' \circ (\mathbb{1}_A \otimes \psi^1)(a \otimes x)) \\ &= \left[m_2' \circ (\mathbb{1}_A \otimes m_1') \circ (\mathbb{1}_A \otimes \psi^1)(a \otimes x) \right] \\ &+ \left[m_2' \circ (\mu_1 \otimes \mathbb{1}_A \otimes \mathbb{1}_{N_2}) \circ (\mathbb{1}_A \otimes \psi^1)(a \otimes x) \right] \\ &= \left[m_2' \circ (\mathbb{1}_A \otimes (m_2' \circ (\mathbb{1}_A \otimes \psi^1) \circ \delta^1))(a \otimes x) \right] \\ &+ \left[m_2' \circ (\mu_1 \otimes \mathbb{1}_A \otimes \mathbb{1}_{N_2}) \circ (\mathbb{1}_A \otimes \psi^1)(a \otimes x) \right] \\ &= \left[m_2' \circ (\mathbb{1}_A \otimes \mu_2 \otimes \mathbb{1}_{N_2}) \circ (\mathbb{1}_A \otimes \psi^1) \circ (\mathbb{1}_A \otimes \delta^1)(a \otimes x) \right] \\ &+ \left[m_2' \circ (\mathbb{1}_A \otimes \psi^1) \circ (\mu_1 \otimes \mathbb{1}_{N_1})(a \otimes x) \right] \\ &= \left[m_2' \circ (\mathbb{1}_A \otimes \psi^1) \circ (\mu_2 \otimes \mathbb{1}_{N_1}) \circ (\mathbb{1}_A \otimes \delta^1)(a \otimes x) \right] \\ &+ \left[m_2' \circ (\mathbb{1}_A \otimes \psi^1) \circ (\mu_1 \otimes \mathbb{1}_{N_1})(a \otimes x) \right] \\ &= m_2' \circ (\mathbb{1}_A \otimes \psi^1) \circ [(\mu_2 \otimes \mathbb{1}_{N_1}) \circ (\mathbb{1}_A \otimes \delta^1) + (\mu_1 \otimes \mathbb{1}_{N_1})](a \otimes x) \\ &= m_2' (\mathbb{1}_A \otimes \psi^1)(m_1(a \otimes x)). \end{split}$$

The first equality is by the compatibility condition for \mathcal{N}_2 applied to

$$(\mathbb{1}_A \otimes \psi^1)(a \otimes x).$$

The second equality is the observation that because ψ^1 is a $D\text{-structure homomorphism, we have$

$$m_2' \circ (\mathbb{1}_A \otimes \psi^1) \circ \delta_{N_1}^1 + m_1' \circ \psi^1 = 0.$$

It is straightforward to see that the association of homomorphisms

$$\psi^1 \mapsto m'_2 \circ (\mathbb{1}_A \otimes \psi^1)$$

is inverse to the association

$$\psi \mapsto \psi(1 \otimes \cdot).$$

References

 Robert Lipshitz, Peter S. Ozsvath, and Dylan P. Thurston. Bordered Heegaard Floer homology. Mem. Amer. Math. Soc., 254(1216):viii+279, 2018.

6