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ABSTRACT. We discuss A algebras and modules, tensor products of A
modules, and type D structures on graded k-modules.
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1. INTRODUCTION

These lecture notes follow sections 2.1, 2.2, and 2.3 of Bordered Heegaard Floer
homology by Lipshitz, Ozsvath, and Thurston [1]. The first two sections of these
lecture notes focus on the definitions of A, algebras, A, modules, and the A,
tensor product. The third section of these notes defines type D structures and
proves a correspondence lemma that associates D homomorphisms with differential
graded (dg) homomorphisms.

2. Asc ALGEBRAS AND MODULES

We work in the category of Z-graded complexes over a fixed commutative ground
ring k, where k has has characteristic 2. The symbol ® with no subscript will be
implicitly understood to be the tensor product over the ring k. We consider modules

M over k, where
M =5 M..
dez

Also for n € Z and M a graded k-module, we can shift the grading of M by n to
define M|n|, where M[n]g = Mg_p,.

Definition 2.1. An A, algebra A over k is a graded k-module equipped with
k-linear multiplication maps p; : A®? — A[2 — i] satisfying the compatibility con-
ditions
n—j+1
Z Z pila1 @ ... @1 @ pi(a®...0a14j-1) Qai+; Q... Q ay)
i+j=n+1 =1

for each n > 1.
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We can visualize the compatibility conditions of A,, modules in the following
diagram:

0= Z Z A®I-1 A®n—(+5)+1

The double arrows represent elements of A®? coming in, where ¢ > 1. The single
dotted arrow represents an element of A coming in. We will use this diagram style
throughout these lecture notes.

If we forget about p; for i > 1, we can view an A, algebra as a chain complex
in the usual sense. If for (A, {p;}52,), we have y; = 0 for ¢ > 2, then we call
(A, {p:}32,) a differential graded (dg) algebra over k. p; : A — A[1] would be the
differential and ps : A ® A — A would be the multiplication map.

We can reinterpret the compatibility conditions of an A, algebra if we define

T*(A[L]) == @D A" [n].

This way, we can combine the y;’s into a single map p : 7*(A[1]) — A[2] and define
D : T*(A[1]) = T*(A[1]) by

3

n—j+1 HA‘@J'

D= E A®A-1) i A®(n—(+7)+1)
j=1 1=1 !
|
!

The compatibility condition is equivalent to p o D = 0, which is also equivalent to
DoD=0.

Definition 2.2. An A, algebra (A, {u;}$2,) is operationally bounded if p; = 0 for
1 sufficiently large.

Definition 2.3. A (right) A,, module M over A is a graded k-module M equipped
with operations

mi s M @ A®0Y 5 M2 — ]

satisfying the compatibility conditions

0= Z mi(mij(z®a1 ®...0aj-1)Q ... Qap_1)
i+j=n+1

n—j
+ Z Zmi(x®a1®...®al_1®,uj(al®...®al+j_1)®...an_1),
i+j=n+1 I=1
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where A : T*(A[1]) — T*(A[1]) ® T*(A[1]) is the map

n

A1 ®...Qay) = Z(al®...®am)®(am+1®...®an).

m=0

~

Definition 2.4. An A,, module M over a strictly unital A, algebra is strictly
unital if mo(z ® 1) =2, mi(z®a1 ®...®a;—1) =0if i > 2 and some a; =1. M
is bounded if m; = 0 for sufficiently large 7.

We can combine the p; and m; into a degree 1 map
m:MeT*(A]l]) > M @ T (A[1])
defined by
mr1 Qa2 ®...RQ ap)

n
:Zml(x®a2®...®al)®al+1®...®an
=1

n n—j+1
+Z Z TR ® ... Qa1 @ 1) Qa4 ® ... an.
j=1 i=1

Definition 2.5. A strictly unital homomorphism f : M — M’ of A, modules is
a collection of maps 4
fi: M@ APCY 5 M1 — )

7 7

A | A
+ oy +
m

satisfying
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One example of a strictly unital homomorphism is the identity homomorphism,
defined by 1: M — M, 1,(z) =z, 1;(x ® A®20=D) =0 for i > 1. In the Bordered
Heegaard Floer homology paper, compsition of homomorphisms of 4., modules is
defined, and in this sense, 1 acts as the identity homomorphism.
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3. A, TENSOR PRODUCTS

Definition 3.1. Let M be a right A,, module and let A be a left A, module
over an A, algebra A. Their A, tensor product is the chain complex

MEUN == M @ T*(A[l]) ® N
equipped with the boundary operator

; N[ ) |
T+ (AN | A |
' 1 s I 1
i / T N | e a v
" 1l | |
| | | K |
- - 4 Y 4

T* (A1) |

N

n A

u \
An important case is when N/ = A, in which we have

M= MOUN =M T*(All]) @ A,

which has the structure of an A, module over A.

In the lecture notes on Bordered Heegaard Floer homology, homotopies between
homomorphisms of A, modules is defined. Using these definitions, the authors
prove the following proposition:

Proposition 3.2. If A and M are strictly unital, M is homotopy equivalent to
M.

4. TYPE D STRUCTURES

Definition 4.1. Fix a dg algebra A. Let N be a graded k-module, equipped with
a map
SN : N = (A® N)[1]
such that
(@In)o(Ta®@d)od' + (11 ®1n) 06 : N - AN

vanishes. We call (N, §}%) a type D structure over A with base ring k. A k-module
map ¢ : N7 - A® Ns is a D-structure homomorphism if

(B2 ® Tny) 0 (Ta® 9P ) 0 bx, + (n2® Tn,) 0 (T4 ®p,) 0" + (1 ® Tpy,) 0 9p' = 0.
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Lemma 4.2. If (N, %) is a type D structure, then AQ N can be given the structure
of a left A module, with

mi(a®@y) = [(2®In) o (1a®8) + p @ 1]
ma(a1 ® (a®y)) = p2(a1 ®a) @y.

Moreover, if ' : Ny — A ® Ny is a D-structure homomorphism, then there is an
induced map of dg modules from AR Ny to A® Ny defined by (ma®@1y,)o(14@91).

So by the lemma, we can associate a dg module N to a type D structure (NN, §').

Lemma 4.3. Let Ny, Ny be two type D structures over a dg algebra A, and
N1 = A® Ni,N3 := A® Ny be their associated dg modules. The correspon-
dence from the previous lemma gives an isomorphism between the space of type D
homomorphisms N1 — A® Ny with the sapce of dg homomrphisms from N to N3.
Two type D homomprhisms are homotopic iff the corresponding dg homomrphisms
are homotopic by an A-equivariant homotopy.

Proof. We only prove the correspondence between dg homomorphisms and type D
homomorphisms. Given v : A7 — N, a dg homomorphism, we prove ! : N; —
A® Ny, ¥ (z) =¥ (1 ® x) is a D structure homomorphism. Indeed,

(2@ Tng) 0 (Ta®@ YY) 08k, + (2 @ Tn,) 0 (14 ®Ix,) 0! + (1 ® Tiy,) 0 b
:méo(ﬂAowl)od}Vl +mllo7j)1
=90 by, + 900y,
=0

because we have

o (a®y(z))

mj(a @ (1 ® x))
P(ma(e® (1@ 2)))
P(p2(a®1) @ x)
Pla® x)

and

mj o ¢! (z) =m} o (1 ® x))
Y(mi(l®x))
$([(p2 © Tny) 0 (14 @ 0,) + m @ TIn](1® z))
P((p2 ® 1,) 0 (1@ 0y, (2)) + (1) © )
(
(

Y(6y, () +0®z)
(O, (z)).

Now given ¢! : Ny — A® Ny a D-structure homomorphism, we see that m4o (14 ®
Y1) is a dg homomorphism from AV; = A ® Ny to Ny = A ® N,. Indeed, we see
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that mj o (14 ® 1) commutes with the algebra action:
my(a1 @ (my o (14 @ ¢') (a2 ® x))) = my(ar ® (mj 0 (a2 ® P (2)))
= mj(p2(ar ® az) @ Y (x))
=myo (14 @Y (p2(ar ® az) ® x)
=myo (14 @9 (ma(ar ® (a2 ® 2))),

where the second equality comes from the definition of m/, and the compatibility
conditions for A, algebras. Second, we have that m} o (14 ® ¥!) commutes with
the chain differential. Indeed,

mi(my o (1a@9')(a®x))
=[mho(la@mi)o(la®¢")(a® )]
+ [mho (@1a@1n,)o(la®y!)(a® )]
=[mho(1a® (mho(la®¢')od"))(a® )]
+ [mhyo(m ®1a®@ 1) 0 (Ta® Y )(a® )]
=[mho(1a®@u2®In,)o(1a®v') o (14 ®d")(a® )]
+ [m’Q o(l4 ®1/11) o(u ® ﬂNl)(a®x)]
=[mho(la®y!)o(ua®In,) o (Ta®d')(a® )]
+[myo(Ta@vh)o (i @ 1y,)(a® )]
=mjy o (1a®@ 1) o [(n2 @ 1n,) 0 (Ta® ") + (1 @ Ty, (a ® )
=my(1a ® ¢')(mi(a ® x)).
The first equality is by the compatibility condition for N5 applied to
(Ta@yh)(a® ).
The second equality is the observation that because 1! is a D-structure homomor-
phism, we have
mj o (Ta@¥h) 00y, +mj oy’ =0.
It is straightforward to see that the association of homomorphisms
Pt myo (Ta @yt
is inverse to the association

Y= (1®:).
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