
A∞ STRUCTURES

ADVIKA RAJAPAKSE

Abstract. We discuss A∞ algebras and modules, tensor products of A∞
modules, and type D structures on graded k-modules.
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1. Introduction

These lecture notes follow sections 2.1, 2.2, and 2.3 of Bordered Heegaard Floer
homology by Lipshitz, Ozsváth, and Thurston [1]. The first two sections of these
lecture notes focus on the definitions of A∞ algebras, A∞ modules, and the A∞
tensor product. The third section of these notes defines type D structures and
proves a correspondence lemma that associates D homomorphisms with differential
graded (dg) homomorphisms.

2. A∞ algebras and modules

We work in the category of Z-graded complexes over a fixed commutative ground
ring k, where k has has characteristic 2. The symbol ⊗ with no subscript will be
implicitly understood to be the tensor product over the ring k. We consider modules
M over k, where

M =
⊕
d∈Z

Md.

Also for n ∈ Z and M a graded k-module, we can shift the grading of M by n to
define M [n], where M [n]d =Md−n.

Definition 2.1. An A∞ algebra A over k is a graded k-module equipped with
k-linear multiplication maps µi : A

⊗i → A[2 − i] satisfying the compatibility con-
ditions∑

i+j=n+1

n−j+1∑
l=1

µi(a1 ⊗ . . .⊗ al−1 ⊗ µj(al ⊗ . . .⊗ al+j−1)⊗ al+j ⊗ . . .⊗ an)

for each n ≥ 1.
1
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We can visualize the compatibility conditions of A∞ modules in the following
diagram:

0 =
∑

i+j=n+1

n−j+1∑
l=1


µj

µi

A⊗j

A⊗l−1 A⊗n−(l+j)+1


The double arrows represent elements of A⊗i coming in, where i ≥ 1. The single
dotted arrow represents an element of A coming in. We will use this diagram style
throughout these lecture notes.

If we forget about µi for i > 1, we can view an A∞ algebra as a chain complex
in the usual sense. If for (A, {µi}∞i=1), we have µi = 0 for i > 2, then we call
(A, {µi}∞i=1) a differential graded (dg) algebra over k. µ1 : A → A[1] would be the
differential and µ2 : A⊗A→ A would be the multiplication map.

We can reinterpret the compatibility conditions of an A∞ algebra if we define

T ∗(A[1]) :=

∞⊕
n=0

A⊗n[n].

This way, we can combine the µi’s into a single map µ : T ∗(A[1]) → A[2] and define
D : T ∗(A[1]) → T ∗(A[1]) by

D :=

n∑
j=1

n−j+1∑
l=1

 µjA⊗(l−1)

A⊗j

A⊗(n−(l+j)+1)

 .

The compatibility condition is equivalent to µ ◦D = 0, which is also equivalent to
D ◦D = 0.

Definition 2.2. An A∞ algebra (A, {µi}∞i=1) is operationally bounded if µi = 0 for
i sufficiently large.

Definition 2.3. A (right) A∞ module M over A is a graded k-moduleM equipped
with operations

mi :M ⊗A⊗(i−1) →M [2− i]

satisfying the compatibility conditions

0 =
∑

i+j=n+1

mi(mj(x⊗ a1 ⊗ . . .⊗ aj−1)⊗ . . .⊗ an−1)

+
∑

i+j=n+1

n−j∑
l=1

mi(x⊗ a1 ⊗ . . .⊗ al−1 ⊗ µj(al ⊗ . . .⊗ al+j−1)⊗ . . . an−1),
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which can be visualized as

0 =

∆

m

m

+
D

m

,

where ∆ : T ∗(A[1]) → T ∗(A[1])⊗ T ∗(A[1]) is the map

∆(a1 ⊗ . . .⊗ an) =

n∑
m=0

(a1 ⊗ . . .⊗ am)⊗ (am+1 ⊗ . . .⊗ an).

Definition 2.4. An A∞ module M over a strictly unital A∞ algebra is strictly
unital if m2(x⊗ 1) = x, mi(x⊗ a1 ⊗ . . .⊗ ai−1) = 0 if i > 2 and some aj = 1. M
is bounded if mi = 0 for sufficiently large i.

We can combine the µi and mi into a degree 1 map

m :M ⊗ T ∗(A[1]) →M ⊗ T ∗(A[1])

defined by

m(x1 ⊗ a2 ⊗ . . .⊗ an)

=

n∑
l=1

ml(x⊗ a2 ⊗ . . .⊗ al)⊗ al+1 ⊗ . . .⊗ an

+

n∑
j=1

n−j+1∑
l=1

x⊗ a1 ⊗ . . .⊗ al−1 ⊗ µj(al ⊗⊗al+j−1)⊗ al+j ⊗ . . .⊗ an.

Definition 2.5. A strictly unital homomorphism f : M → M′ of A∞ modules is
a collection of maps

fi :M ⊗A⊗(i−1) →M ′[1− i]

satisfying

0 =

∆

m

f

+

∆

f

m′

+

D

f

One example of a strictly unital homomorphism is the identity homomorphism,
defined by 1 : M →M , 11(x) = x, 1i(x⊗ A⊗(i−1)) = 0 for i > 1. In the Bordered
Heegaard Floer homology paper, compsition of homomorphisms of A∞ modules is
defined, and in this sense, 1 acts as the identity homomorphism.
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3. A∞ tensor products

Definition 3.1. Let M be a right A∞ module and let N be a left A∞ module
over an A∞ algebra A. Their A∞ tensor product is the chain complex

M⊗̃AN :=M ⊗ T ∗(A[1])⊗N

equipped with the boundary operator
∆

m

N

T ∗(A[1])

M


+



∆

∆

µ

N

T ∗(A[1])

M



+


∆

n

N

T ∗(A[1])

M


An important case is when N = A, in which we have

M = M⊗̃AN :=M ⊗ T ∗(A[1])⊗A,
which has the structure of an A∞ module over A.

In the lecture notes on Bordered Heegaard Floer homology, homotopies between
homomorphisms of A∞ modules is defined. Using these definitions, the authors
prove the following proposition:

Proposition 3.2. If A and M are strictly unital, M is homotopy equivalent to
M.

4. Type D structures

Definition 4.1. Fix a dg algebra A. Let N be a graded k-module, equipped with
a map

δ1N : N → (A⊗N)[1]

such that

(µ1 ⊗ 1N ) ◦ (1A ⊗ δ1) ◦ δ1 + (µ1 ⊗ 1N ) ◦ δ1 : N → A⊗N

vanishes. We call (N, δ1N ) a type D structure over A with base ring k. A k-module
map ψ : N1 → A⊗N2 is a D-structure homomorphism if

(µ2 ⊗ 1N2
) ◦ (1A ⊗ ψ1) ◦ δ1N1

+ (µ2 ⊗ 1N2
) ◦ (1A ⊗ δ1N2

) ◦ ψ1 + (µ1 ⊗ 1N2
) ◦ ψ1 = 0.



A∞ STRUCTURES 5

Lemma 4.2. If (N, δ1) is a type D structure, then A⊗N can be given the structure
of a left A module, with

m1(a⊗ y) = [(µ2 ⊗ 1N ) ◦ (1A ⊗ δ1) + µ1 ⊗ 1N ]

m2(a1 ⊗ (a⊗ y)) = µ2(a1 ⊗ a)⊗ y.

Moreover, if ψ1 : N1 → A ⊗N2 is a D-structure homomorphism, then there is an
induced map of dg modules from A⊗N1 to A⊗N2 defined by (m2⊗1N2)◦(1A⊗ψ1).

So by the lemma, we can associate a dg module N to a type D structure (N, δ1).

Lemma 4.3. Let N1, N2 be two type D structures over a dg algebra A, and
N1 := A ⊗ N1,N2 := A ⊗ N2 be their associated dg modules. The correspon-
dence from the previous lemma gives an isomorphism between the space of type D
homomorphisms N1 → A⊗N2 with the sapce of dg homomrphisms from N1 to N2.
Two type D homomprhisms are homotopic iff the corresponding dg homomrphisms
are homotopic by an A-equivariant homotopy.

Proof. We only prove the correspondence between dg homomorphisms and type D
homomorphisms. Given ψ : N1 → N2 a dg homomorphism, we prove ψ1 : N1 →
A⊗N2, ψ

1(x) = ψ(1⊗ x) is a D structure homomorphism. Indeed,

(µ2 ⊗ 1N2
) ◦ (1A ⊗ ψ1) ◦ δ1N1

+ (µ2 ⊗ 1N2
) ◦ (1A ⊗ δ1N2

) ◦ ψ1 + (µ1 ⊗ 1N2
) ◦ ψ1

=m′
2 ◦ (1A ◦ ψ1) ◦ δ1N1

+m′
1 ◦ ψ1

=ψ ◦ δ1N1
+ ψ ◦ δ1N1

=0

because we have

m′
2 ◦ (a⊗ ψ1(x)) =m′

2(a⊗ ψ(1⊗ x))

=ψ(m2(a⊗ (1⊗ x)))

=ψ(µ2(a⊗ 1)⊗ x)

=ψ(a⊗ x)

and

m′
1 ◦ ψ1(x) =m′

1 ◦ ψ(1⊗ x))

=ψ(m1(1⊗ x))

=ψ([(µ2 ⊗ 1N1) ◦ (1A ⊗ δ1N1
) + µ1 ⊗ 1N ](1⊗ x))

=ψ((µ2 ⊗ 1N1
) ◦ (1⊗ δ1N1

(x)) + µ1(1)⊗ x)

=ψ(δ1N1
(x) + 0⊗ x)

=ψ(δ1N1
(x)).

Now given ψ1 : N1 → A⊗N2 a D-structure homomorphism, we see that m′
2 ◦ (1A⊗

ψ1) is a dg homomorphism from N1 = A ⊗ N1 to N2 = A ⊗ N2. Indeed, we see
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that m′
2 ◦ (1A ⊗ ψ1) commutes with the algebra action:

m′
2(a1 ⊗ (m′

2 ◦ (1A ⊗ ψ1)(a2 ⊗ x))) = m′
2(a1 ⊗ (m′

2 ◦ (a2 ⊗ ψ1(x)))

= m′
2(µ2(a1 ⊗ a2)⊗ ψ1(x))

= m′
2 ◦ (1A ⊗ ψ1)(µ2(a1 ⊗ a2)⊗ x)

= m′
2 ◦ (1A ⊗ ψ1)(m2(a1 ⊗ (a2 ⊗ x))),

where the second equality comes from the definition of m′
2 and the compatibility

conditions for A∞ algebras. Second, we have that m′
2 ◦ (1A ⊗ ψ1) commutes with

the chain differential. Indeed,

m′
1(m

′
2 ◦ (1A ⊗ ψ1)(a⊗ x))

=
[
m′

2 ◦ (1A ⊗m′
1) ◦ (1A ⊗ ψ1)(a⊗ x)

]
+
[
m′

2 ◦ (µ1 ⊗ 1A ⊗ 1N2
) ◦ (1A ⊗ ψ1)(a⊗ x)

]
=
[
m′

2 ◦ (1A ⊗ (m′
2 ◦ (1A ⊗ ψ1) ◦ δ1))(a⊗ x)

]
+
[
m′

2 ◦ (µ1 ⊗ 1A ⊗ 1N2
) ◦ (1A ⊗ ψ1)(a⊗ x)

]
=
[
m′

2 ◦ (1A ⊗ µ2 ⊗ 1N2) ◦ (1A ⊗ ψ1) ◦ (1A ⊗ δ1)(a⊗ x)
]

+
[
m′

2 ◦ (1A ⊗ ψ1) ◦ (µ1 ⊗ 1N1
)(a⊗ x)

]
=
[
m′

2 ◦ (1A ⊗ ψ1) ◦ (µ2 ⊗ 1N1) ◦ (1A ⊗ δ1)(a⊗ x)
]

+
[
m′

2 ◦ (1A ⊗ ψ1) ◦ (µ1 ⊗ 1N1
)(a⊗ x)

]
=m′

2 ◦ (1A ⊗ ψ1) ◦ [(µ2 ⊗ 1N1) ◦ (1A ⊗ δ1) + (µ1 ⊗ 1N1)](a⊗ x)

=m′
2(1A ⊗ ψ1)(m1(a⊗ x)).

The first equality is by the compatibility condition for N2 applied to

(1A ⊗ ψ1)(a⊗ x).

The second equality is the observation that because ψ1 is a D-structure homomor-
phism, we have

m′
2 ◦ (1A ⊗ ψ1) ◦ δ1N1

+m′
1 ◦ ψ1 = 0.

It is straightforward to see that the association of homomorphisms

ψ1 7→ m′
2 ◦ (1A ⊗ ψ1)

is inverse to the association
ψ 7→ ψ(1⊗ ·).

□
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